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A discussion of sound propagation in a moving #uid con"ned by cylindrical walls is
presented. Based on the continuity equation and the Euler equation, a single &&exact''
ordinary di!erential equation in the acoustic pressure is derived for the case where the
medium #ow v

0
(r) depends on the radial co-ordinate only and points in the axial direction.

This &&exact'' pressure wave equation is solved semi-analytically by means of the Frobenius
method and compared with the conventional approximative wave equation known as the
local-plane-wave (LPW) approximation for a range of #ow values. In this way, information
about mode phase-speed changes with #ow and #ow-meter performance is obtained. It is
found that the LPW approximation works well only for mode propagation parallel or nearly
parallel to the direction of #ow. Based on the &&exact'' acoustic pressure wave equation, it is
also concluded that #ow-meter errors become independent of ultrasound frequency and
cylinder radius, a point that the LPW approximation fails to predict. Furthermore, an
&&exact'' procedure shows that #ow-meter errors depend on the Reynolds number and the
mode number only. In actual fact, it is found that #ow measurement based on the
fundamental mode is approximately free of errors while all other modes are characterized by
the same (and, generally, non-vanishing) deviation of measurement.
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1. INTRODUCTION

It has been a common practice in several papers to determine the in#uence of a background
#ow on mode phase speeds when discussing sound propagation characteristics in cylinders
by using the so-called local-plane-wave approximation (LPW) [1}5]. In reference [1],
a semi-analytical treatment of mode phase speeds in a cylindrical waveguide carrying
a moving #uid is given for the case where the #ow pro"le is laminar and parabolic.
References [2, 3] continue along the same lines as in reference [1], although using a more

restrictive condition (uR/c)JvN /c@1, where u, R, v, and c denote the ultrasound frequency,
cylinder radius, mean #ow, and sound speed respectively), and consider #ow measurement
accuracy based on transit-time di!erentials in the more general case where the #ow pro"le
changes gradually from a parabolic pro"le in the laminar regime towards a #at pro"le in the
turbulent regime as the Reynolds number increases. References [2, 3] point out that strong
measurement errors generally result if higher order modes are excited by the transmitter,
especially in the laminar regime, when using the standard expression in #ow-meter
0022-460X/01/440719#11 $35.00/0 ( 2001 Academic Press
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applications for determining mean #ow based on transit-time di!erentials,

Dt"2b
a
vN /c2 , (1)

and b
a

is the ultrasound transmission distance. In reference [4], a correction to the
phase-speed changes with #ow as obtained in references [2, 3] is pointed out, while the
analysis of #ow-measurement accuracy given in reference [5] is extended to cover arbitrary
#ow pro"les.

In the present work, the LPW approximation employed in all the papers mentioned
above [1}5] is compared with an &&exact'' analysis based on the equation of continuity and
the Euler equation for the discussion of mode phase-speed changes with #ow for an
arbitrary #ow pro"le. Following determination of phase-speed changes with #ow,
#ow-meter performance is addressed. Numerical results are given for the particular case
where the #ow pro"le gradually changes from a parabolic pro"le to a #at pro"le as the
Reynolds number increases. It is shown that the LPW approximation works well only if the
mode considered propagates parallel or nearly parallel to the direction of #ow.

2. THEORY

In the following, a di!erential equation describing sound propagation in a moving
non-viscous #uid con"ned by cylindrical walls is derived in the low-#ow regime, where #ow
velocity is much smaller than the speed of sound everywhere in the #uid. By the
separation-of-variables method, upon assuming a harmonic dependence in time and the
axial co-ordinate: exp[i(bz!ut)], a single ordinary di!erential equation in the radial
co-ordinate r is obtained governing the acoustic pressure p@(r). This di!erential equation in
p@(r) is solved by means of the Frobenius series expansion method [6].

In previous analyses on the same subject, the so-called LPW approximation has been
employed in examining the in#uence of a background #ow on ultrasound propagation in
cylindrical waveguides [1}5]. The approximation made in LPW is that a background #ow
v(r) along the axial direction modi"es the local sound speed from c in the quiet medium to
c#v(r) in the moving medium. It is assumed that the medium is homogeneous so that c is
a constant in space. The LPW is expected to be a good approximation for fundamental
mode (plane-wave) propagation parallel to the direction of #ow but less so as the mode
number increases. This follows from the fact that the sound propagation direction becomes
more and more tilted in comparison with the #ow direction as the mode number
increases.

The starting point is the equation of continuity,

Lo
Lt

#$ ) (ov)"0 (2)

and the Euler equation

Lv

Lt
#(v )$)v"!

$p

o
. (3)

For the velocity, pressure, and density one can now write

v"v
0
#v, p"p

0
#p@, o"o

0
#o@, (4)}(6)
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where v
0
, p

0
, and o

0
denote the (background) #ow velocity, pressure, and density in an

undisturbed medium, respectively, and it is assumed that the background #ow corresponds
to a steady incompressible #ow situation (o

0
"constant, $ ) v

0
"0). The primed quantities

v@, p@, and o@ represent small changes in #ow velocity, pressure, and density due to the
presence of, e.g., low-intensity ultrasound waves in the medium. To "rst order in the small
quantities above, equations (2) and (3) read as

Lp@
Lt

#o
0
c2$ ) v@#(v

0
)$)p@"0, (7)
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Lt

#(v@ )$)v
0
#(v

0
)$)v@"!
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o
0

#

p@
(o

0
c)2

$p
0
, (8)

and use has been made of the isentropic relation

p@"A
Lp

Lo
0
B
S

o@"c2o@, (9)

upon assuming adiabatic and reversible conditions.
Finally, applying the separation-of-variables method by assuming the following

functional form of p@(r, z, h; t):

p@(r, z, h; t)"f (r) exp[i(bz!ut)], (10)

corresponding to monofrequency operation and axisymmetrical (ultrasound) excitation
conditions (note that the latter condition implies independence of p@(r, z, h; t) on the
azimuthal angle h), equations (7) and (8) can be simpli"ed considerably so as to obtain

!iup@#o
0
c2 A

Lv@
r

Lr
#

v@
r
r
#ibv@

zB#ibv
0
p@"0, (11)
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0

Lp@
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. (13)

In deriving equations (11)} (13), it has furthermore been assumed that the background #ow
v
0

points in the axial direction and depends on the radial co-ordinate only (note that
equation (3) then implies $p

0
"!o

0
(v

0
)$)v

0
"0). The parameter b is left undetermined at

this point; however, it will be shown in the following that an in"nite but discrete set of
b values are possible when invoking the boundary condition that the normal velocity
component must vanish at the cylinder wall, also known as the rigid-wall approximation, so
that equation (13) can be restated as

v@
r
"

i
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1

bv
0
!u

Lp@
Lr

. (14)
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Inserting equation (14) into equation (12) yields

v@
z
"!

1

o
0
(bv

0
!u)2

Lp@
Lr

Lv
0

Lr
!

b
o
0
(bv

0
!u)

p@. (15)

Next, inserting equations (14) and (15) into equation (11) concludes the derivation of an
ordinary di!erential equation in the acoustic pressure p@ [7}9]:

L2p@
Lr2

#A
1

r
!

2b
(bv

0
!u)

Lv
0

Lr B
Lp@
Lr

#A
(bv

0
!u)2

c2
!b2B p@"0. (16)

Next, the assumption that #ow velocities v
0

are much smaller than the phase speed u/b is
made, i.e., bv

0
/u@1. In the case of ultrasonic #ow-meter applications in, e.g.,

water-transport systems or district-heating systems, the #ow speed is in the range
0)01}10m/s while the sound speed is about 1500m/s, and so the assumption bv

0
/u@1 is

well justi"ed. In this case (bv
0
/u@1), equation (16) can be approximated by
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0
(r@)

c2
!b2B p@"0, (17)

where

r@"r/R (18)

has been introduced and R denotes the cylinder radius. In the next section, this di!erential
equation (equation (17)) is solved by using the Frobenius power series method.

As a remainder, note that in LPW the acoustic pressure wave equation is [4]

$2p@#
u2

(c#v
0
(r))2

p@"0 (19)

and by the separation-of-variables method, the associated LPW radial wave equation
becomes

L2p@
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2v
0
(r)

c

u2

c2 B p@"0. (20)

Observe that the present &&exact'' acoustic pressure wave equation (equation (17)) agrees
with the LPW equation (equation (20)) for the case where v

0
(r)"0 as it should.

3. A POWER SERIES SOLUTION TO THE ACOUSTIC PRESSURE WAVE EQUATION
USING THE FROBENIUS METHOD

Before applying the Frobenius method to solve equation (17), it can be assumed that the
background #ow v

0
(r@ ) can be expanded in an in"nite power series:

v
0
(r@)"

=
+
j/0

v
0jr@j. (21)
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Note that this assumption is a weak restriction since most radially dependent velocity
pro"les can be written as a power series in the radial co-ordinate including #at pro"les,
parabolic pro"les, and logarithmic pro"les as suggested by Nikuradse [5, 10].

The Frobenius method is based on the assumption that p@ can be written as a series
expansion in r@,

p@"
=
+
j/0

ajr@j`k, (22)

where k is unspeci"ed (in general, at this point, k can be any real constant). Insertion of
equations (21) and (22) into equation (17) and demanding that a

0
O0 gives k"0 if terms

proportional to r@k~2 are equated (corresponding to j"0). Again, employing the identity
principle for in"nite power series to terms proportional to r@j leads to the following
recursion formula:
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(23)

Thus, a general solution to equation (17) is given by equation (22) where the coe$cients aj
obey the recursion formula expressed by equation (23). One is now in a position to
determine the allowed values for b. The rigid-wall assumption implies that the radial
(normal) velocity component v@

r
must vanish at r"R: i.e., the radial component of the

acoustic pressure gradient must obey (according to equation (14))

Lp@/Lr@"0 (24)

or

=
+
j/1

jaj"0. (25)

By solving equation (25) numerically using equation (23), a set of discrete b
n

values are
found and so a discrete set of solutions p@

n
exist. Each of the p@

n
solutions represents a (sound)

propagating mode.
One can de"ne the phase-speed di!erence D/

n
between an upstream and a downstream

sound propagation situation, in which the nth mode is the only mode excited, as

D/
n
"ub

a A
1

c~
pn

!

1

c`
pn
B , (26)

where b
a

denotes the distance between the two transducers (the two transducer axes are
assumed aligned with the cylinder axis), and c~

pn
"u/b~

n
and c`

pn
"u/b`

n
are the phase

speeds corresponding to an upstream sound propagation situation and a downstream
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sound propagation situation respectively. Similarly, b~
n

and b`
n

denote the values of b
n
in an

upstream and a downstream sound propagation situation respectively. The transit time
di!erence Dt

n
between the two successive sound propagation situations then becomes

Dt
n
"

D/
n

u
(27)

and the so-called deviation of measurement E
n
, often used as a quality measure for a #ow

meter, can be written as

E
n
"

Dt
n
!2b

a
wN /c2

2b
a
wN /c2

, (28)

where 2b
a
wN /c2 is the transit time di!erence of the fundamental mode.

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, results are given for mode phase-speed changes and the deviation of
measurement as a function of mean #ow based on solving the &&exact'' acoustic pressure
wave equation (equation (17)) and the LPW wave equation (equation (20)) respectively.

Firstly, consider a background #ow of the form

v
0
(r)"q (Re)v

turb
(r)#(1!q (Re))v

lam
(r), (29)

where

v
turb

(r)"vN , v
lam

(r)"2vN A1!
r2

R2B , (30, 31)

q(Re)"1!
1

1#(Re/Re
0
)n

, Re"
2vN R
l

(32, 33)

and l denotes the medium viscosity. In equation (33), Re
0
"2000 is the Reynolds number

locating the transition region between the laminar and turbulent #ow regimes and the
exponent n"4 is chosen. Note that a #at pro"le is used in the turbulent regime as this
pro"le approximates the logarithmic pro"le suggested by Nikuradse's measurements well
[5, 10].

In Figure 1, calculated phase-speed changes with mean #ow are shown for the fundamental
mode (mode 1) and the "rst three higher order modes (modes 2}4) corresponding to the
following parameter values (1) f"u/2n"4 MHz, R"0)01m, c"1543 m/s,
l"5)471]10~7m2/s. The values for the sound speed and viscosity correspond to water at
503C. Two curves are shown for each mode. The solid and dash}dotted curves represent
data based on solving equation (17) (&&exact'' wave equation) and equation (20) (LPW
approximation) numerically respectively. Consider "rst, mode 1. It is evident that
phase-speed changes with #ow are equal to the mean #ow in the #ow range 0}0)2m/s using
equation (17) as well as equation (20). For modes 2}4, the situation is di!erent. Although
results based on equation (17) as well as equation (20) agree quite well, it is seen that
phase-speed changes with #ow are somewhat higher than the mean #ow especially for the



Figure 1. Mode phase-speed changes with mean #ow for the "rst four modes allowed to propagate. The
parameter values used in the calculation are: f"4]106Hz, R"0)01m, c"1543m/s, and l"5)471]10~7m2/s.
The (**) and (} ) } ) } ) curves are found by solving the &&exact'' acoustic pressure wave equation (equation (17)) and
the LPW approximate equation (equation (20)) respectively.
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lowest #ow values, i.e., for a mean #ow below 0)05 m/s. This behavior can be understood
from Figure 2. The deviation of measurement E

1
(mode 1) is approximately 0 in the #ow

range: 0}20m/s, but E
2
, E

3
, and E

4
(modes 2, 3, and 4) are all approximately #1/3 in the

#ow range 0}0)02 m/s, and at higher #ow values they drop to approximately zero (note the
logarithmic scale on the x-axis). The 33)33% phase-speed change overshoot with #ow found
in the low-#ow regime for modes 2}4 (Figure 1) leads to deviation of measurement values of
the same amount: 33)33% (Figure 2). Analytical LPW results based on Sodha's paper [1]
agree with the E

n
values found in the present work [2}5]. In actual fact, equation (28) in

reference [4] shows that in the laminar region (q(Re)"0), E
n
becomes 0 for the fundamental

mode and approximately 1/3 for all the other modes characterized by mode phase-speed
values c

pn
close to the (thermodynamic) sound speed c. As mean #ow approaches 0)1m/s

(onset of turbulent regime), deviation of measurement values approaches 0 for all modes
whether based on equation (17) or equation (20).

In Figure 3, calculated phase-speed changes with mean #ow are shown for modes 1}4
corresponding to the parameter values (2) f"u/2n"1MHz, R"0)0055m, c"1543 m/s,
l"5)471]10~7m2/s. Again, the solid and dash-dotted curves represent data based on
solving equation (17) (&&exact'' wave equation) and the approximate LPW equation
(equation (20)) numerically respectively. The fundamental mode is still characterized by



Figure 2. Deviation of measurement as a function of mean #ow for the "rst four modes allowed to propagate.
The parameter values used in the calculation are: f"4]106Hz, R"0)01m, c"1543m/s, and
l"5)471]10~7m2/s. The (**) and (} ) } ) }) curves are found by solving the &&exact'' acoustic pressure wave
equation (equation (17)) and the LPW approximate equation (equation (20)) respectively.
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a phase-speed change with #ow equal to the mean #ow. This results was found in previous
analyses using the LPW approximation as already mentioned (E

1
"0 according to

equation (28) in reference [4]). The present work shows that an &&exact'' analysis yields the
same result as in an LPW analysis. However, considering modes 2}4, it is evident that
increasing discrepancy is found between phase-speed change results with mean #ow based
on using the &&exact'' (equation (17)) and LPW (equation (20)) wave equations. This is
expected since the LPW approximation is good approximation for small tilt angles only
and the mode propagation direction becomes increasingly tilted with respect to the #ow
direction as the mode number increases from 2 to 4. The reason that this discrepancy is
(much) more pronounced for the parameter choice in (2) as compared to (1) is that the lower
frequency and radius in the former case leads to much higher c

pn
values and di!raction

angles h (cos h"c/c
pn

) for a given mode n'1 as compared to the latter case.
In Figure 4, deviation of measurement values as a function of mean #ow are shown for the

parameter choice (2). Figure 3 suggests that E
1

must be approximately 0 in the (laminar)
#ow regime 0}0)2m/s. Data in Figure 4 reveal that E

1
is approximately 0 in the larger #ow

range 0}15 m/s. The fact that E
1
is approximately 0 in the turbulent regime is a consequence

of the #at-pro"le assumption (refer again to equation (28) in reference [4]). The previously



Figure 3. Mode phase-speed changes with mean #ow for the "rst four modes allowed to propagate. The
parameter values used in the calculation are: f"1]106Hz, R"0)0055m, c"1543 m/s, and
l"5)471]10~7m2/s. The (**) and (} ) } ) }) curves are found by solving the &&exact'' acoustic pressure wave
equation (equation (17)) and the LPW approximate equation (equation (20)) respectively.
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mentioned discrepancy (Figure 3) between results based on the &&exact'' wave equation
(equation (17)) and the approximate LPW equation (equation (20)) is also evident in
Figure 4 for the higher order modes n'1. It is interesting to observe that E

n
becomes 1/3

in the laminar-#ow regime for all higher order modes (n'1) in case (2) (Figure 4) as well as
in case (1) (Figure 2) based on the &&exact'' wave equation. This result suggests that E

n
, in

general, depends on #ow pro"le and mode number only, and that E
n

is independent of
frequency and radius (this statement has been checked for numerically using various
parameter choices!). In the LPW approximation, on the other hand, the deviation of
measurement depends on all four quantities: #ow pro"le, mode number, frequency, and
radius [4, 5]. The present analysis clearly shows, as expected, that LPW works well only for
modes characterized by phase speed c

pn
close to the thermodynamic sound speed c.

5. CONCLUSIONS

Sound propagation in a moving #uid con"ned by cylindrical walls is discussed. Based on
the equation of continuity and the Euler equation, a single &&exact'' ordinary di!erential
equation is derived in the acoustic pressure. This di!erential equation is solved by means of



Figure 4. Deviation of measurement as a function of mean #ow for the "rst four modes allowed to propagate.
The parameter values used in the calculation are: f"1]106Hz, R"0)0055m, c"1543m/s, and
l"5)471]10~7m2/s. The (**) and (} ) } ) }) curves are found by solving the &&exact'' acoustic pressure wave
equation (equation (17)) and the LPW approximate equation (equation (20)) respectively.
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the semi-analytical Frobenius method and a discrete set of axial wave vectors b
n
is found

thereby enabling the determination of mode phase-speed changes with #ow and an
assessment of #ow-meter performance/accuracy. A comparison with the conventional but
approximative LPW approximation shows that the LPW approximation works well only
in cases where the mode considered propagates parallel or nearly parallel to the direction of
#ow. It is also concluded that the deviation of measurement E

n
depends on the Reynolds

number only for a given mode number and not on the ultrasound frequency or cylinder
radius, a result that the LPW approximation fails to predict.
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